Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38603548

RESUMEN

In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542245

RESUMEN

The advent of CRISPR/Cas9 technology has revolutionized genome editing, enabling the attainment of once-unimaginable goals. CRISPR/Cas's groundbreaking attributes lie in its simplicity, versatility, universality, and independence from customized DNA-protein systems, erasing the need for specialized expertise and broadening its scope of applications. It is therefore more and more used for genome modification including the generation of mutants. Beyond such editing scopes, the recent development of novel or modified Cas-based systems has spawned an array of additional biotechnological tools, empowering both fundamental and applied research. Precisely targeting DNA or RNA sequences, the CRISPR/Cas system has been harnessed in fields as diverse as gene regulation, deepening insights into gene expression, epigenetic changes, genome spatial organization, and chromatin dynamics. Furthermore, it aids in genome imaging and sequencing, as well as effective identification and countering of viral pathogens in plants and animals. All in all, the non-editing aspect of CRISPR/Cas exhibits tremendous potential across diverse domains, including diagnostics, biotechnology, and fundamental research. This article reviews and critically evaluates the primary CRISPR/Cas-based tools developed for plants and animals, underlining their transformative impact.


Asunto(s)
Sistemas CRISPR-Cas , Juniperus , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Plantas/genética , Genómica , ADN
3.
Int J Pharm ; 653: 123904, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38355074

RESUMEN

An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Humanos , Hidrogeles/farmacología , Ácido Hialurónico/farmacología , Secretoma , Células Madre Mesenquimatosas/metabolismo , Heparina , Materiales Biocompatibles/metabolismo , Citocinas/metabolismo
4.
Int J Biol Macromol ; 258(Pt 1): 128766, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096933

RESUMEN

Infected skin wounds represent a serious health threat due to the long healing process and the risk of colonization by multi-drug-resistant bacteria. Silver nanoparticles (AgNPs) have shown broad-spectrum antimicrobial activity. This study introduces a novel approach to address the challenge of infected skin wounds by employing gellan gum-dopamine (GG-DA) as a dual-functional agent, serving both as a reducing and capping agent, for the in situ green synthesis of silver nanoparticles. Unlike previous methods, this work utilizes a spray-drying technique to convert the dispersion of GG-DA and AgNPs into microparticles, resulting in nano-into-micro systems (AgNPs@MPs). The microparticles, with an average size of approximately 3 µm, embed AgNPs with a 13 nm average diameter. Furthermore, the study explores the antibacterial efficacy of these AgNPs@MPs directly and in combination with other materials against gram-positive and gram-negative bacteria. The versatility of the antimicrobial material is showcased by incorporating the microparticles into injectable hydrogels. These hydrogels, based on oxidized Xanthan Gum (XGox) and a hyperbranched synthetic polymer (HB10K-G5-alanine), are designed with injectability and self-healing properties through Shiff base formation. The resulting nano-into-micro-into-macro hybrid hydrogel emerges as a promising biomedical solution, highlighting the multifaceted potential of this innovative approach in wound care and infection management.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Polisacáridos Bacterianos , Antibacterianos , Hidrogeles , Plata , Dopamina , Bacterias Gramnegativas , Bacterias Grampositivas
5.
ACS Appl Nano Mater ; 6(21): 20161-20172, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37969785

RESUMEN

The gallium monochalcogenides family, comprising gallium sulfide (GaS), gallium selenide (GaSe), and gallium telluride (GaTe), is capturing attention for its applications in energy storage and production, catalysis, photonics, and optoelectronics. This interest originates from their properties, which include an optical bandgap larger than those of most common transition metal dichalcogenides, efficient light absorption, and significant carrier mobility. For any application, stability to air exposure is a fundamental requirement. Here, we perform a comparative study of the stability of layered GaS, GaSe, and GaTe nanometer-thick films down to a few layers with the goal of identifying the most suitable Ga chalcogenide for future integration in photonic and optoelectronic devices. Our study unveils a trend of decreasing air stability from sulfide to selenide and finally to telluride. Furthermore, we demonstrate a hydrogen passivation process to prevent the oxidation of GaSe with a higher feasibility and durability than other state-of-the-art passivation methods proposed in the literature.

6.
Macromol Biosci ; 23(12): e2300224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37590124

RESUMEN

Treating wound infections is a difficult task ever since pathogenic bacteria started to develop resistance to common antibiotics. The present study develops hybrid hydrogels based on the formation of a polyelectrolyte complex between the anionic charges of dopamine-functionalized Gellan Gum (GG-DA) and the cationic moieties of the TMP-G2-alanine dendrimer. The hydrogels thus obtained can be doubly crosslinked with CaCl2 , obtaining solid hydrogels. Or, by oxidizing dopamine to GG-DA, possibly causing further interactions such as Schiff Base and Michael addition to take place, hydrogels called injectables can be obtained. The latter have shear-thinning and self-healing properties (efficiency up to 100%). Human dermal fibroblasts (HDF), human epidermal keratinocytes (HaCaT), and mouse monocyte cells (RAW 264.7), after incubation with hydrogels, in most cases show cell viability up to 100%. Hydrogels exhibit adhesive behavior on various substrates, including porcine skin. At the same time, the dendrimer serves to crosslink the hydrogels and endows them with excellent broad-spectrum microbial eradication activity within four hours, evaluated using Staphylococcus aureus 2569 and Escherichia coli 178. Using the same GG-DA/TMP-G2-alanine ratios hybrid hydrogels with tunable properties and potential for wound dressing applications can be produced.


Asunto(s)
Dendrímeros , Hidrogeles , Ratones , Animales , Porcinos , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Dopamina , Dendrímeros/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Alanina
7.
Molecules ; 28(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446794

RESUMEN

Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this n-type semiconductor limit its photocatalytic performance. A strategy to overcome these limitations relies on the realization of a nanocomposite that combines TiO2 nanoparticles with carbon-based nanomaterials, such as rGO (reduced graphene oxide) and fullerene (C60). On the other hand, the design and realization of coatings formed of such TiO2-based nanocomposite coatings are essential to make them suitable for their technological applications, including those in the environmental field. In this work, aerosol-assisted atmospheric pressure plasma deposition of nanocomposite coatings containing both TiO2 nanoparticles and carbon-based nanomaterials, as rGO or C60, in a siloxane matrix is reported. The chemical composition and morphology of the deposited films were investigated for the different types of prepared nanocomposites by means of FT-IR, FEG-SEM, and TEM analyses. The photocatalytic activity of the nanocomposite coatings was evaluated through monitoring the photodegradation of methylene blue (MB) as a model organic pollutant. Results demonstrate that the nanocomposite coatings embedding rGO or C60 show enhanced photocatalytic performance with respect to the TiO2 counterpart. In particular, TiO2/C60 nanocomposites allow to achieve 85% MB degradation upon 180 min of UV irradiation.


Asunto(s)
Carbono , Nanocompuestos , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química , Nanocompuestos/química , Azul de Metileno/química , Catálisis
8.
Front Plant Sci ; 14: 1223861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521915

RESUMEN

Plant male sterility (MS) represents the inability of the plant to generate functional anthers, pollen, or male gametes. Developing MS lines represents one of the most important challenges in plant breeding programs, since the establishment of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines have been developed in several species of economic interest, particularly in horticultural crops and ornamental plants. Over the years, MS has been accomplished through many different techniques ranging from approaches based on cross-mediated conventional breeding methods, to advanced devices based on knowledge of genetics and genomics to the most advanced molecular technologies based on genome editing (GE). GE methods, in particular gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible and successful strategic ideas used to alter the function of key genes, regulating numerous biological processes including MS. These precision breeding technologies are less time-consuming and can accelerate the creation of new genetic variability with the accumulation of favorable alleles, able to dramatically change the biological process and resulting in a potential efficiency of cultivar development bypassing sexual crosses. The main goal of this manuscript is to provide a general overview of insights and advances into plant male sterility, focusing the attention on the recent new breeding GE-based applications capable of inducing MS by targeting specific nuclear genic loci. A summary of the mechanisms underlying the recent CRISPR technology and relative success applications are described for the main crop and ornamental species. The future challenges and new potential applications of CRISPR/Cas systems in MS mutant production and other potential opportunities will be discussed, as generating CRISPR-edited DNA-free by transient transformation system and transgenerational gene editing for introducing desirable alleles and for precision breeding strategies.

9.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511422

RESUMEN

Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.


Asunto(s)
Asteraceae , /genética , Inulina , Fitomejoramiento , Mapeo Cromosómico , Asteraceae/genética
10.
Front Plant Sci ; 14: 1204538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332702

RESUMEN

The Cichorium genus offers a unique opportunity to study the sporophytic self-incompatibility (SSI) system, being composed of species characterized by highly efficient self-incompatibility (e.g., C. intybus) and complete self-compatibility (e.g., C. endivia). To this end, the chicory genome was used to map seven previously identified SSI locus-associated markers. The region containing the S-locus was therefore restricted to an ~4 M bp window on chromosome 5. Among the genes predicted in this region, MDIS1 INTERACTING RECEPTOR LIKE KINASE 2 (ciMIK2) was particularly promising as a candidate for SSI. Its ortholog in Arabidopsis (atMIK2) is involved in pollen-stigma recognition reactions, and its protein structure is similar to that of S-receptor kinase (SRK), a key component of the SSI system in the Brassica genus. The amplification and sequencing of MIK2 in chicory and endive accessions revealed two contrasting scenarios. In C. endivia, MIK2 was fully conserved even when comparing different botanical varieties (i.e., smooth and curly endive). In C. intybus, 387 polymorphic positions and 3 INDELs were identified when comparing accessions of different biotypes all belonging to the same botanical variety (i.e., radicchio). The polymorphism distribution throughout the gene was uneven, with hypervariable domains preferentially localized in the LRR-rich extracellular region, putatively identified as the receptor domain. The gene was hypothesized to be under positive selection, as the nonsynonymous mutations were more than double the synonymous ones (dN/dS = 2.17). An analogous situation was observed when analyzing the first 500 bp of the MIK2 promoter: no SNPs were observed among the endive samples, whereas 44 SNPs and 6 INDELs were detected among the chicory samples. Further analyses are needed to confirm the role of MIK2 in SSI and to demonstrate whether the 23 species-specific nonsynonymous SNPs in the CDS and/or the species-specific 10 bp-INDEL found in a CCAAT box region of the promoter are responsible for the contrasting sexual behaviors of chicory and endive.

11.
Hortic Res ; 10(5): uhad056, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37213682

RESUMEN

Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions. The terroir, namely the set of agri-environmental factors to which a variety is subjected, can influence the phenotype at the physiological, molecular, and biochemical level, representing an important phenomenon connected to the typicality of productions. We investigated the determinants of plasticity by conducting a field-experiment where all terroir variables, except soil, were kept as constant as possible. We isolated the effect of soils collected from different areas, on phenology, physiology, and transcriptional responses of skin and flesh of a red and a white variety of great economic value: Corvina and Glera. Molecular results, together with physio-phenological parameters, suggest a specific effect of soil on grapevine plastic response, highlighting a higher transcriptional plasticity of Glera in respect to Corvina and a marked response of skin compared to flesh. Using a novel statistical approach, we identified clusters of plastic genes subjected to the specific influence of soil. These findings could represent an issue of applicative value, posing the basis for targeted agricultural practices to enhance the desired characteristics for any soil/cultivar combination, to improve vineyards management for a better resource usage and to valorize vineyards uniqueness maximizing the terroir-effect.

12.
Plants (Basel) ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986929

RESUMEN

Chicory, a horticultural crop cultivated worldwide, presents many botanical varieties and local biotypes. Among these, cultivars of the Italian radicchio group of the pure species Cichorium intybus L. and its interspecific hybrids with Cichorium endivia L.-as the "Red of Chioggia" biotype-includes several phenotypes. This study uses a pipeline to address the marker-assisted breeding of F1 hybrids: it presents the genotyping-by-sequencing results of four elite inbred lines using a RADseq approach and an original molecular assay based on CAPS markers for screening mutants with nuclear male sterility in the radicchio of Chioggia. A total of 2953 SNP-carrying RADtags were identified and used to compute the actual estimates of homozygosity and overall genetic similarity and uniformity of the populations, as well as to determine their genetic distinctiveness and differentiation. Molecular data were further used to investigate the genomic distribution of the RADtags among the two Cichorium species, allowing their mapping in 1131 and 1071 coding sequences in chicory and endive, respectively. Paralleling this, an assay to screen the genotype at the male sterility locus Cims-1 was developed to discriminate wild-type and mutant alleles of the causative gene myb80-like. Moreover, a RADtag mapped close to this genomic region proved the potential application of this method for future marker-assisted selection tools. Finally, after combining the genotype information of the core collection, the best 10 individuals from each inbred line were selected to compute the observed genetic similarity as a measure of uniformity as well as the expected homozygosity and heterozygosity estimates scorable by the putative progenies derived from selfing (pollen parent) and full-sibling (seed parent) or pair-wise crossing (F1 hybrids). This predictive approach was conducted as a pilot study to understand the potential application of RADseq in the fine tuning of molecular marker-assisted breeding strategies aimed at the development of inbred lines and F1 hybrids in leaf chicory.

13.
J Exp Bot ; 74(5): 1309-1330, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36520499

RESUMEN

The production of high-quality wines is strictly related to the correct management of the vineyard, which guarantees good yields and grapes with the right characteristics required for subsequent vinification. Winegrowers face a variety of challenges during the grapevine cultivation cycle: the most notorious are fungal and oomycete diseases such as downy mildew, powdery mildew, and gray mold. If not properly addressed, these diseases can irremediably compromise the harvest, with disastrous consequences for the production and wine economy. Conventional defense methods used in the past involved chemical pesticides. However, such approaches are in conflict with the growing attention to environmental sustainability and shifts from the uncontrolled use of chemicals to the use of integrated approaches for crop protection. Improvements in genetic knowledge and the availability of novel biotechnologies have created new scenarios for possibly producing grapes with a reduced, if not almost zero, impact. Here, the main approaches used to protect grapevines from fungal and oomycete diseases are reviewed, starting from conventional breeding, which allowed the establishment of new resistant varieties, followed by biotechnological methods, such as transgenesis, cisgenesis, intragenesis, and genome editing, and ending with more recent perspectives concerning the application of new products based on RNAi technology. Evidence of their effectiveness, as well as potential risks and limitations based on the current legislative situation, are critically discussed.


Asunto(s)
Oomicetos , Vitis , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Vitis/genética , Vitis/microbiología
14.
Front Plant Sci ; 14: 1270381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235200

RESUMEN

Introduction: Persian walnut (Juglans regia) is an economically important nut fruit species cultivated worldwide for its nutritious kernel and timber quality wood. Walnut trees are mostly hetero-dichogamous and, depending on the genotype, some cultivars are protogynous, while others are protandrous. Although selfing is possible when male and female blooms overlap, the dichogamy of the species promotes outcrossing. In addition to sexual reproduction, some reports indicate that elements of apomixis may occur in commercial orchards of walnut varieties and in the last two decades, nut production by apomixis has been reported in walnut. However, there are no reliable studies on the occurrence of apomictic reproduction based on cytoembryological observations and/or molecular marker-progeny tests. This study addresses the combined use of molecular and cytological analyses to gain new insights into the population genetics and reproduction systems of J. regia. Methods: We systematically analyzed the reproductive origin of individual progeny plants from 8 different cultivated walnut genotypes using microsatellite genotyping and carried out cytohistological investigations of 5 cultivated walnut genotypes arising seed sets from isolated flowers, to shed light on the mode of reproduction. Results and discussion: These cytometric and genotyping analyses did not support any asexual mode of reproduction or asexual propagation by seed and all individuals studied were identified as zygotic plants produced by crossing. Likewise, the cytological findings did not confirm completely the first component of apomixis, namely apomeiosis. On the other hand, according to histological evidence, adventitious embryony seems to take place at low frequency. Overall, our findings suggest that the occurrence of gametophytic apomixis is unlikely in J. regia, but sporophytic apomixis cannot be completely ruled out.

15.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499703

RESUMEN

The development of biomedical systems with antimicrobial and antibiofilm properties is a difficult medical task for preventing bacterial adhesion and growth on implanted devices. In this work, a fibrillar scaffold was produced by electrospinning a polymeric organic dispersion of polylactic acid (PLA) and poly(α,ß-(N-(3,4-dihydroxyphenethyl)-L-aspartamide-co-α,ß-N-(2-hydroxyethyl)-L-aspartamide) (PDAEA). The pendant catechol groups of PDAEA were used to reduce silver ions in situ and produce silver nanoparticles onto the surface of the electrospun fibers through a simple and reproducible procedure. The morphological and physicochemical characterization of the obtained scaffolds were studied and compared with virgin PLA electrospun sample. Antibiofilm properties against Pseudomonas aeruginosa, used as a biofilm-forming pathogen model, were also studied on planar and tubular scaffolds. These last were fabricated as a proof of concept to demonstrate the possibility to obtain antimicrobial devices with different shape and dimension potentially useful for different biomedical applications. The results suggest a promising approach for the development of antimicrobial and antibiofilm scaffolds.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Pseudomonas aeruginosa , Biopelículas , Antibacterianos/farmacología , Antibacterianos/química
16.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364532

RESUMEN

We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic−inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel mesh was selected as an effective support for the possible future technological application of the coating for photocatalytically assisted water depollution. The prepared coatings were thoroughly investigated from the chemical and morphological points of view and were demonstrated to be photocatalytically active in the degradation of an organic molecule, used as a pollutant model, in water upon UV light irradiation. In order to optimize the photocatalytic performance, different approaches were investigated for the coating's realization, namely (i) the control of the deposition time and (ii) the application of a postdeposition O2 plasma treatment on the pristine coatings. Both strategies were found to be able to increase the photocatalytic activity, and, remarkably, their combination resulted in a further enhancement of the photoactivity. Indeed, the proposed combined approach allowed a three-fold increase in the kinetic constant of the degradation reaction of the model dye methylene blue with respect to the pristine coating. Interestingly, the chemical and morphological characterizations of all the prepared coatings were able to account for the enhancement of the photocatalytic performance. Indeed, the presence of the TiO2 nanoparticles on the outmost surface of the film confirmed the accessibility of the photocatalytic sites in the nanocomposite and reasonably explained the enhanced photocatalytic performance. In addition, the sustained photoactivity (>5 cycles of use) of the nanocomposites was demonstrated.

17.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365480

RESUMEN

A microfibrous tubular scaffold has been designed and fabricated by electrospinning using poly (1,4-butylene succinate) as biocompatible and biodegradable material. The scaffold morphology was optimized as a small diameter and micro-porous conduit, able to foster cell integration, adhesion, and growth while avoiding cell infiltration through the graft's wall. Scaffold morphology and mechanical properties were explored and compared to those of native conduits. Scaffolds were then seeded with adult normal human dermal fibroblasts to evaluate cytocompatibility in vitro. Haemolytic effect was evaluated upon incubation with diluted whole blood. The scaffold showed no delamination, and mechanical properties were in the physiological range for tubular conduits: elastic modulus (17.5 ± 1.6 MPa), ultimate tensile stress (3.95 ± 0.17 MPa), strain to failure (57 ± 4.5%) and suture retention force (2.65 ± 0.32 N). The shown degradation profile allows the graft to provide initial mechanical support and functionality while being colonized and then replaced by the host cells. This combination of features might represent a step toward future research on PBS as a biomaterial to produce scaffolds that provide structure and function over time and support host cell remodelling.

18.
Genes (Basel) ; 13(11)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421771

RESUMEN

Lolium multiflorum Lam., commonly known as Italian ryegrass, is a forage grass mostly valued for its high palatability and digestibility, along with its high productivity. However, Italian ryegrass has an outbreeding nature and therefore has high genetic heterogeneity within each variety. Consequently, the exclusive use of morphological descriptors in the existing varietal identification and registration process based on the Distinctness, Uniformity, and Stability (DUS) test results in an inadequately precise assessment. The primary objective of this work was to effectively test whether the uniformity observed at the phenological level within each population of Italian ryegrass was confirmed at the genetic level through an SSR marker analysis. In this research, using 12 polymorphic SSR loci, we analyzed 672 samples belonging to 14 different Italian ryegrass commercial varieties to determine the pairwise genetic similarity (GS), verified the distribution of genetic diversity within and among varieties, and investigated the population structure. Although the fourteen commercial varieties did not show elevated genetic differentiation, with only 13% of the total variation attributable to among-cultivar genetic variation, when analyzed as a core, each variety constitutes a genetic cluster on its own, resulting in distinct characteristics from the others, except for two varieties. In this way, by combining a genetic tool with the traditional morphological approach, we were able to limit biases linked to the environmental effect of field trials, assessing the real source of diversity among varieties and concretely answering the key requisites of the Plant Variety Protection (PVP) system.


Asunto(s)
Lolium , Lolium/genética , Marcadores Genéticos , Plantas , Semillas/genética , Italia
19.
Opt Express ; 30(15): 27609-27622, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236929

RESUMEN

Interest in layered van der Waals semiconductor gallium monosulfide (GaS) is growing rapidly because of its wide band gap value between those of two-dimensional transition metal dichalcogenides and of insulating layered materials such as hexagonal boron nitride. For the design of envisaged optoelectronic, photocatalytic and photonic applications of GaS, the knowledge of its dielectric function is fundamental. Here we present a combined theoretical and experimental investigation of the dielectric function of crystalline 2H-GaS from monolayer to bulk. Spectroscopic imaging ellipsometry with micron resolution measurements are corroborated by first principle calculations of the electronic structure and dielectric function. We further demonstrate and validate the applicability of the established dielectric function to the analysis of the optical response of c-axis oriented GaS layers grown by chemical vapor deposition (CVD). These optical results can guide the design of novel, to our knowledge, optoelectronic and photonic devices based on low-dimensional GaS.

20.
Int J Pharm ; 627: 122257, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36195284

RESUMEN

The development of wound dressings with combined antioxidant, antibacterial and tissue adhesion functions has been a difficult medical task for the treatment of wound infections. We synthetized a dopamine and PEG functionalized Gellan Gum (GG) to produce an injectable hydrogel with radical scavenging activity having both specific and aspecific antibiotic/antimicrobial properties. Using starting GG with different molecular weights, we obtained two derivatives that have been used to prepare the gel precursor dispersion, that undergoes gelation in the presence of colistin and dried microparticles (MPs) functionalized on the surface with polydopamine (pDA). Both were used to dope the hydrogel, increase the radical scavenger activity and impart near-infrared light (NIR) responsiveness. Indeed, with an irradiation of 810 nm, the incorporated microparticles exhibit photothermal transformation properties and improve the release of antibiotics on demand. The combination of photothermal and antibiotic therapy with synergistic antibacterial action acts on Pseudomonas aeruginosa and leads to a bactericidal effect in a few hours, while on Staphylococcus aureus there is an effect of inhibition of growth over time due only to the hyperthermic effect. We believe this study provides a promising method for fabricating a multifunctional injectable hydrogel for the potential treatment of infected skin wounds.


Asunto(s)
Hipertermia Inducida , Infección de Heridas , Humanos , Hidrogeles/farmacología , Antioxidantes/farmacología , Dopamina , Colistina/farmacología , Antibacterianos/farmacología , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...